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Preface 

 

 

Talk not meant as an overview of accelerator R&D  

in the AP group – rather, an overview of 

 

one of the top AP group priorities:                                               

to understand the observed single bunch instability 
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Outline 

 

• Motivation 

• Sources of machine coupling impedance 

• Experimental observations 

• Theoretical speculations 

• Future R&D 
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Motivation 

• Typically deliver 100 mA electron beam in 23 bunches 
(4.3 mA/bunch) for normal operation for users 

• Horizontal instability (centroid oscillations) observed 
above about 5 mA/bunch – this is above the transverse 
mode-coupling instability (TMCI) threshold  

• Normal operation with high positive chromaticity allows    
a single bunch intensity limit > TMCI limit: up to about     
10 mA. However, beam properties (effective emittance) 
degraded above TMCI limit. 

• Addition over time of small-gap insertion device 
chambers, a major source of coupling impedance, has  

o resulted in lowered single bunch instability and 
intensity limit 

o required operation with higher chromaticity and 
smaller beta functions to restore 

• Need to understand physics and how to control instability 
in order to  

o satisfy anticipated future user requirement for higher 
bunch current 

o anticipate effect of additional small-gap insertion 
device chambers and influence design 

o mitigate instability while preserving beam quality, in 
particular, beam lifetime (e.g. effect of high 
chromaticity) 
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Advanced Photon Source site 
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25 of 40 sectors are occupied with photon 
beamlines: bending magnet and insertion 

device (ID) synchrotron radiation 
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Typical APS storage ring sector 



K. Harkay IU-ANL-FNAL   10/4/2002 7 

Insertion Device (undulator magnet)                  
with ID chamber  

Small-gap ID chamber 
(8-mm or 5-mm vertical 
height, 5 m long) 
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Main Sources of Impedance in the SR 

 

Single bunch instabilities 

• small-gap ID chambers 

o resistive wall impedance 

o geometric impedance (transitions) 

• other discontinuities: rf fingers, kickers, scraper “cavity” 

• “trapped” chamber modes? 

 

Multibunch instabilities 

• rf cavity higher-order modes 

• other discontinuities: scraper “cavity” 

• “trapped” chamber modes? 
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APS Storage Ring chambers 

Standard 

 antechamber radiation slot beam chamber 

 

8-mm gap ID chamber 

                   

5-mm gap ID chamber 

                  

42 mm 
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Small-gap ID chambers are located in 5-m straight sections 
(total no.: 22 with 8-mm gap, 2 with 5-mm gap, 1 with 19.6-mm gap) 
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Transverse Mode-Coupling Instability 
(a.k.a. strong head-tail, fast head-tail, transverse turbulence) 

 
from A. Chao, Physics of Collective Beam Instabilities in High Energy 
Accelerators, John Wiley & Sons (1993): 
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Single bunch instability: transverse mode coupling instability 

Force due to transverse wake defocuses beam, i.e., detunes betatron frequency. 

When νβ crosses (mνs) modulation sidebands, synchrotron motion can couple to transverse 
plane and beam can be lost unless chromaticity sufficiently large/positive. 

Tune slope increases with no. of small gap chambers: mode merging threshold decreases. 

    Horizontal   ξx > 1.3, ξy ≈ 4         Vertical                      

 
        ∆νx/∆I = -8x10-4/mA         ∆νy/∆I = -2.6x10-3/mA 

(data courtesy of L. Emery [K. Harkay et al., Proc. of 1999 PAC, 1644])

m=0 

m = –1 

m=0 

m = –1 
m = –2 
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Early data using beam position monitor turn-by-turn histories showed horizontal centroid oscillations 
whose bunch intensity instability onset and mode (bursting vs. steady-state amplitude) varied with          

rf voltage (chromaticities: ξx = 1.3, ξy = 3.9) (2/15/1999)

Rf 
voltage 
(MV) 

Bunch 
intensity 
(mA) 
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Large <x> oscillations above mode-merging threshold (Vrf 9.4 MV case shown):  
some Users will observe an effective emittance blowup, ∆εx 

 

 
Note: bunch length σz, energy spread δ, and emittance εx also vary with current  

(εx decoherence NOT 100% of <x> oscillation amplitude; σx = 220 µm (7.5 nm-r lattice))
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Variations with different machine parameters 

 
7.5 nm lattice, Vrf = 7.3 MV, ξx,y = (3,6) 

 
 

3.9 nm lattice, Vrf = 9.5 MV, ξx,y = (3.2,5.8) 
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Dual-sweep streak camera horizontal image of single bunch undergoing coherent 
horizontal oscillations in bursting mode: bunch does not completely decohere 

[data courtesy of B. Yang; K. Harkay et al., Proc of 1999 PAC, 1644] 
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Measured bunch lengthening vs Vrf 
(L. Emery, M. Borland, A. Lumpkin) 

 
no 5-mm chambers (March 2000) 

Z||/n §�����Ω [estimated, Y.-C. Chae et al., Proc. of 2001 PAC, 1817]  

 

 

 

high ξx  (B. Yang, L. Emery, Y.-C. Chae, K. Harkay) 
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Measured δ and εx vs Ib 
(another  method: note ξx,y differs from the previous figure)  

 

 
Vrf 7 MV, nominal ξx,y (B. Yang, K. Harkay, E. Lessner, A. Lumpkin [K. Harkay et al., 

Proc. of 2001 PAC, 1915]) 
 

Maximum amplitude of horizontal centroid            
oscillations as a function of Vrf 
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8-mm gap ID vacuum chamber impedance  
 

Zy (effective) estimated five ways: 

1. Zy = (ZRW + Zgeom) determined experimentally from change in 
tune slope, ∆ν/∆I, as a function of no. of chambers [N. Sereno et al, 

Proc. of 1997 PAC, 1700]:  

Zy = 53 kΩ/m per chamber x 20 = 1.1 MΩ/m 

 

2. Simulations with Zy represented by broad-band resonator 
impedance model reproduced measured tune slope and 
intensity threshold for TMCI at low chromaticity [K. Harkay et al, 

Proc. of 1999 PAC, 1644]: 

exp: ∆νx/∆I = -8x10-4/mA   ∆νy/∆I = -2.6x10-3/mA 

model: 0.2 MΩ/m     1.2 MΩ/m  

ITMCI thresh:  4.4 mA          2.2 mA 

 

3. Impedance calculated: resistive wall and geometric 

a. resistive wall ∝ 1/b3 
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f = cutoff frequency = c/2πb = 13 GHz 

G1y = 0.825 [Gluckstern and van Zeijts, CERN SL/AP 92-25, Jun 1992] 

ZRW (per 8-mm chamber, L = 5 m) = 3.4 kΩ/m 
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b. geometric (transition): assuming a perfectly conducting 
circularly cylindrical tube of half-height b=4 mm, angle θ [Bane 
and Krinsky, Proc. of 1993 PAC, 3375] 
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Zθ = 2 × (σs/c)W⊥ = 26 kΩ/m             (5-mm: Zθ = 55 kΩ/m) 

Zθ = 20 × 26 = 0.5 MΩ/m 

c. total per 8-mm chamber:  

Zy = ZRW + Zθ = 3.4 + 26 = 30 kΩ/m 

c. total per 5-mm chamber:  

Zy = ZRW + Zθ = 12 + (2.1 × 26) = 67 kΩ/m 

 

4. MAFIA calculations of wake potentials: Zθ from extracted tune 
slopes for geometric component (Y.-C. Chae) 

(next talk) 

 

5. Local bump method Zy measurements [L. Emery, G. Decker, J. 
Galayda, Proc. of 2001 PAC, 1823] 

5-mm: Zy [kΩ/m] = 96 ± 8 (ID3);  78 ± 14 (ID4) 

8-mm: Zy = 16 kΩ/m 

 

6. Local betatron phase shift [V. Sajaev] 

Work in progress: preliminary results in agreement with #4 & #5
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Progress/speculation in understanding collective 
transverse behavior above TMCI threshold 

 
• Transverse instability occurring simultaneously with 

longitudinal instabilities: bunch lengthening due to potential 
well distortion and growth in energy spread due to 
microwave instability – attempt to separate bunch length 
dependence (peak current), resonance between betatron 
and synchrotron tunes, and Landau damping due to energy 
spread (i.e., tune spread) 

• Transverse instability growth rate not linear with bunch 
current – nonlinear effects 

• Transverse oscillation amplitude dependence 

o saturates with increasing current in steady-state mode 
(due to amplitude-dependent tune) 

o no simple dependence of amplitude on rf voltage or 
beam current in bursting mode (resonant effect?) 

• Explore possibility of coupling of transverse and longitudinal 
collective motion described in literature: 

o R.D. Kohaupt (DESY reports, ca. 1985) 

o C. Besnier, D. Brandt, B. Zotter (Particle Accelerators 
17, 1985) 

o Yong Ho Chin (DESY 86-081, 1986) 
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TBD: Transverse driving impedance from     
linear instability theory 

Coasting beam equation of motion [B. Zotter and F. Sacherer, CERN 77-13, 

1977]: 
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For bunched beam, need to sum over bunch spectrum 
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This is almost the coasting beam result. If ξω  can be varied, 

( )( )ω⊥ℜ Z  can be deduced by measuring the growth rate ( )( )ω⊥ℑ Z  
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Measured growth rate as a function of horizontal chromaticity (bursting mode) 

Rise time: 

  0.7 ms 

  0.8 

  0.9 

  1.2 

  1.2 
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Saturation amplitude varies with change in amplitude-dependent tune, ∆νx/Nx
2, in 

expected direction (Nx = x-amplitude) (rise time approx. constant: 1 ms)  

(second-order effect of changing harmonic-correcting sextupoles S1, S2 –           
coefficients per E. Crosbie) 

Nx max: 
+ 20% 
 - 50% 
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Possible x-z parametric resonance? 

Self-excited νx and νs tune lines appear to vary out-of-phase over a burst. 

 

 

 

Middle burst: νs appears to rise first, then drops as νx reaches a peak. After 
the peak, νs rises again as νx drops, then νs also drops. 

νs tune 
amplitude 
multiplied 
by two for 
better clarity 
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Future R&D 

 

• Coupling impedance database (Chae et al.) 

o Local bump method (PAC01 – Zy) 

o Local tune shift (V. Sajaev, C.-X. Wang – Zx,y) 

o MAFIA calculations (PAC01 – Zz) 

• Characterize longitudinal instability – validate Z|| 

o Apply Z|| calculated from MAFIA to model with elegant 
code to reproduce bunch lengthening, ∆σt/∆I, and 
microwave instability, ∆δ/∆I 

• Characterize transverse instability – validate Z⊥ 

o Instability threshold, growth rate, and saturation 
amplitude vs Vrf, ξ, ∆νx/Nx

2, dispersion 

• Instability photon diagnostics 

o Details of decoherence over bursts 

• Other supporting analysis 

o Amplitude-dependent tune 

o Measure frequency spectrum evolution to look for 
mode-coupling and/or parametric resonance signatures 

 


